首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   6篇
  国内免费   59篇
化学   289篇
晶体学   1篇
力学   15篇
数学   2篇
物理学   63篇
  2024年   2篇
  2023年   39篇
  2022年   21篇
  2021年   20篇
  2020年   20篇
  2019年   24篇
  2018年   12篇
  2017年   13篇
  2016年   18篇
  2015年   16篇
  2014年   19篇
  2013年   12篇
  2012年   9篇
  2011年   35篇
  2010年   11篇
  2009年   15篇
  2008年   13篇
  2007年   10篇
  2006年   16篇
  2005年   9篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   4篇
  1986年   2篇
  1984年   1篇
排序方式: 共有370条查询结果,搜索用时 31 毫秒
31.
Biomass conversion has been developed by testing various metal based carbon catalysts. Most of the reported catalysts either use very expensive metals or support that provides lower selectivity. In this context, we fabricated new carbon based nanocomposites and studied their catalytic application for furfural reduction – a promising biomass derived molecule. The mono (Cu, Co and Ni) and bimetallic (CuCo and CuNi) nanoparticle supported on commercial graphite (CG) were prepared and characterized by TEM, EDS, XRD and Raman spectroscopy. The analysis revealed that the nanocomposites are made up of metallic nanoparticles with average particle size of 5–13 nm on the graphite matrix. The obtained results indicated that the Cu+Ni@CG catalyst exhibited high catalytic activity for furfural reduction, thus leaving Cu+Ni as the finest and cost effective catalyst for this study.  相似文献   
32.
探讨了金与铝改性的SBA-15分子筛催化剂(Au-Al/SBA-15)上活性中心与葡萄糖氧化制葡萄酸反应性能的关系. 通过固体核磁共振波谱(ssNMR)、 X射线光电子能谱(XPS)、 紫外-可见光谱(UV-Vis)和透射电子显微镜(TEM)等手段对不同Au及Al含量的Au-Al/SBA-15催化剂进行了结构表征. 发现Al 改性能够在SBA-15载体上产生四配位Al物种, Au主要以单质的形式存在; SBA-15上的四配位Al物种具有稳定Au颗粒大小的作用. 通过对比发现, 催化剂上的Au和骨架四配位Al物种间的相互协作促进了对葡萄糖氧化的活性, 而非骨架Al物种会导致副反应的发生, 降低葡萄糖酸产物的选择性. 通过固体13C NMR揭示了反应体系中的NaOH能够将强吸附的产物葡萄糖酸分子从催化剂表面解离, 保持活性位不被覆盖进而促进反应持续进行.  相似文献   
33.
A promising biomass carbon material,manufactured by the carbonation of Physalis peruviana L.calyx at 700℃,is presented in this wo rk.Morphology characterization shows that the carbon material possesses long microtubule bundling and above 30%natural O-atom component on the surface.After KOH chemical etching,the materials maintain the oxygen content but exhibit more micropores and higher specific surface area up to 1732.6 m^2/g.Using as an electrode material for supercapacitor,the active carbon material exhibits high specific capacitance up to 339.7 F/g at 0.5 A/g in 3 mol/L KOH aqueous solution through three-electrode system.The active carbon material also exhibits excellent cycling stability(97%retention)by 10,000 cycles at 10 A/g.The outstanding electrochemical performances are attributing to the unique long microtubule bundling with much more pores and the abundant Oelement on the surface.This biomass carbon material with excellent electrochemical properties could be a useful material for multiple applications.  相似文献   
34.
Fast pyrolysis of biomass is a promising process for the preparation of bio-oil dedicated to energy production. Inorganic species originally present in biomass are known to induce problems such as bio-oil instability or deposits and fouling. However the mechanisms of inorganic species release during biomass pyrolysis into the raw bio-oils still remain unclear. The present work focuses on the determination of inorganic distribution in the products from wheat straw and beech wood fast pyrolysis performed in a fluidized bed. More specifically, the bio-oils are fractionated by using a series of condensers. The results show that more than 60 wt.% of the inorganic content of the overall bio-oil is contained in the aerosols. Several possible interpretations for this observation are discussed. It is likely that the inorganics are transported within the aerosols droplets and solid particles which are recovered in the bio-oils, either by mechano-chemical processes, or by entrainment of submicron intermediate liquid compound formed in the first steps of biomass fast pyrolysis.  相似文献   
35.
碳纳米管担载纳米Ir催化生物质基乙酰丙酸合成γ-戊内酯   总被引:1,自引:0,他引:1  
以碳纳米管(CNTs)担载Ir纳米粒子为催化剂进行生物质基平台化合物乙酰丙酸(LA)选择加氢制备γ-戊内酯(GVL)的研究,并利用X射线衍射、X射线光电子能谱和透射电镜表征了使用前后的Ir/CNT催化剂,探讨了影响LA催化加氢制GVL反应性能的因素和该反应的可能路径.结果表明,与Ru,Rh和Pd等传统铂族金属相比,Ir/CNT催化剂不但可在温和条件下(50℃,2.0 MPa,H2)实现LA至GVL的完全转化,且可对多类直接源于生物质水解的含等量LA/甲酸的“真实”体系实现GVL的高效选择合成.  相似文献   
36.
Enzymatic hydrolysis of ammonia-treated sugar beet pulp   总被引:2,自引:0,他引:2  
Sugar beet pulp is a carbohydrate-rich coproduct generated by the table sugar industry. Beet pulp has shown promise as a feedstock for ethanol production using enzymesto hydroly zepolymeric carbohydrates and engineered bacteria to ferment sugars to ethanol. In this study, sugar beet pulp underwent an ammonia pressurization depressurization (APD) pretreatment in which the pulp was exploded by the sudden evaporation of ammonia in a reactor vessel. APD was found to substantially increase hydrolysis efficiency of the cellulose component, but when hemicellulose- and pectindegrading enzymes wereadded, treated pulp hydrolysis was no better than the untreated control.  相似文献   
37.
基于天宫一号高光谱数据的荒漠化地区稀疏植被参量估测   总被引:1,自引:0,他引:1  
为了精准地估测荒漠化地区的稀疏植被信息,选取内蒙古苏尼特右旗为研究区,以天宫一号高光谱数据为数据源,结合野外实地调查数据,通过归一化植被指数(normalized difference vegetation index, NDVI)和土壤调节植被指数(soil adjusted vegetation index, SAVI)对研究区内的植被覆盖度和生物量进行反演,并对比两种植被指数的优劣。首先,分析了每种波段组合下的植被指数与覆盖度、生物量的相关性,确定了最大相关的波段组合。覆盖度和生物量与NDVI的最大相关系数可达0.7左右,而与SAVI的最大相关系数可达0.8左右。NDVI的最佳波段组合的红光波段中心波长为630 nm,近红外波段的中心波长为910 nm,而SAVI的组合为620和920 nm。其次,分别构建了两种植被指数与覆盖度、生物量之间的线性回归模型,所建模型的R2均能达到0.5以上。SAVI所建模型R2要比NDVI略高,其中植被覆盖度的反演模型R2高达0.59。经留一交叉验证,SAVI所建模型的均方根误差RMSE也比基于NDVI的模型小。结果表明:天宫一号高光谱数据丰富的光谱信息能有效地反映地表植被的真实情况,并且SAVI比NDVI更能较为精准地估测荒漠化地区的稀疏植被信息。  相似文献   
38.
A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high effcient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1Mo1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mo-based catalysts. The carbon conversion significantly increases with rising temperature below 340 oC, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kgcatal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are con-sistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata-lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.  相似文献   
39.
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.  相似文献   
40.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号